
5.1 Summary of EM theory 
 

• Circuit theory 

• Mutual and self inductance 

• Sinusoidal oscillations, phase-shift and complex number 

representation 

• The response of a loop target 
 

 

 Ampere formulated the idea of the force field when he found that 

there was a force created between two current carrying wires: 

Force / unit length = 
r
IIk ba  

In SI units, k = µ0 / 2π   where µ0 = 4π 10-7 

Later this was generalized so the force could be calculated between two 

current carrying circuits a and b. 
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 If we think of this force as something happening to circuit b caused by 

the total effect of circuit a, we could rewrite the expression for Fab as 
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The term in square brackets is now a property of a; it is something created 

by circuit a which interacts with the current in circuit b to produce the force 

on b.  It is defined as a �field� and called the magnetic induction B.   

 

 In SI units, B is Tesla (T).  In egs units, B is in Gauss (1.0 T = 104 

gauss).  [In many magnetic surveys a cgs unit called the gamma (γ) is used.  

1.0 γ = 10-5 gauss = 10-9T (1.0 nT)] 

 

 The force on an element of current then has the form: 
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and if there is a current density, J, i.e. a volume distribution of current , the 

expression for B becomes 
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This simple formula for B was derived by Biot and Savart.  The direction of 

the field follows the right hand rule � with the thumb of right hand in 

direction of current then fingers point in direction of B. 

 

It may be shown that if one takes the curl of B from the formula, then: 

curl B = ∇× B = µ0 J 

which is called the differential form of Ampere�s Law.   

 

 Faraday observed that a time varying magnetic field passing through a 

circuit produced an electromotive force, emf, that was proportional to the 

time rate of change of the magnetic flux threading the circuit.  The total flux, 

Φ, through the circuit is defined as the integral of the component of B 

normal to the surface contained by the circuit: 

� ⋅=Φ sdB �
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Faraday�s Law then states that an emf is produced in the circuit according to: 

emf = 
t

sdB
t ∂
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In a circuit the emf is the integral of the electric field around the circuit, i.e. 

emf = �
Φ−=⋅

dt
dldE

��

 

Using Stokes� Theorem we find the differential form of Faraday�s Law: 

dt
dBE −=×∇ .   

 

 With Ampere�s Law, Faraday�s Law, and the constitutive relations, 

EJ σ= , B = µH, and the fact that ∇⋅ B = 0, we have all the equations needed 

to solve any problem in low frequency electromagnetic induction.  We begin 



with a loop circuit used to illustrate the fundamental physics of all the EM 

methods used to detect conductors in the ground.  We first need to define an 

important circuit parameter - the inductance.   

 

 

Mutual and self inductance 
 

 We saw in the definition of magnetic field that a current in circuit 1 

produces a magnetic field in the vicinity of circuit 2.  The total flux, Φ, 

through circuit 2 is defined as the integral of the component of B normal to 

the surface contained by the circuit: 

� ⋅=Φ 2S2 sdB �
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 Faraday�s Law then states that an emf is produced in circuit 2 if the 

flux threading it is changing with time, i.e. 

emf2 = 
t

sdB
t 2S ∂

Φ∂−=� ⋅
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.   

 

 The B threading circuit 2 is proportional to the current in circuit 1 so 

we can break 
t∂
Φ∂  into 

dt
dI

dI
d 1

1

2 ⋅Φ , and for any given circuit 
1

2
dI

dΦ  is a 

constant and it is called the mutual inductance, M12, of circuits 1 and 2.   

 

 A single isolated circuit carrying current also produces a magnetic 

field, which threads the circuit itself, so there is a relationship between the 

flux in the circuit and its own current.  This is called the self inductance, L: 
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 In any circuit the emf (voltage) caused by the changing field created 

by the current in the circuit is given by: 

dt
dILVemf == .   

This is the voltage created across an inductor when a time varying current 

flows through it.   

 

 We now face the fact that alternating currents are apparently going to 

produce voltages across certain circuit elements, which are proportional to 

the time derivative of the current.  We need a fast review of the 

nomenclature of alternating fields, the concept of phase and the use of 

complex numbers to represent the fields.   

 

 

Sinusoidal oscillations, phase-shift and complex number representation 
 

 The two sinusoidal functions cos(ωt) and cos(ωt + π/4) are plotted 

below.  The angular frequency ω, in radians per second, is equal to 2πf when 

f is in cycles per second or Hertz (Hz).  The period, T, is the time between 

two successive points of equal value on the curve, say between two 

successive maxima, and is equal to 1/f or 2π/ω.  The cos(ωt) curve, often 

called the reference curve, thus has its first maxima at 6.28 on the plot 

below.  The second curve is said to have a phase shift with respect to the 



reference curve.  In this case the phase shift is + π/4 radians or + 45°.  It is 

observed that the curve with the positive phase shift peaks before the 

reference curve and it is said that it has a phase lead.   

 

 
 

It is customary to use a complex number representation for operations with 

sinusoidal functions because the complexity of dealing with sums and 

products of the trigonometric functions is simplified with more easily 

manipulated functions.   

 

 The basic identity used is Euler�s formula: 

eiφ = cosφ + i sinφ   where i = −1  

 

 We may then write eiωt = cos(ωt) + i sin(ωt) and at the end of all 

operations we simply take the real part of the result. Re eiωt is cos(ωt).  We 

immediately can express the phase shift in the same complex notation via: 

cos(ωt + φ) = Re[ ei(ωt + φ)] = Re[eiωt eiφ ] 

            = Re[(cos(ωt) + i sin(ωt))⋅(cos φ + i sin φ)] 



            = cos φ cos ωt  - sin φ sin ωt 

            =   a  cos ωt     -    b  sin ωt 

 

 So we have found with this example of complex number 

representation that the phase shifted cosine may be equally well represented 

by the sum of a cosine wave and a sine wave whose amplitudes are the 

cosine and sine of the phase shift respectively.  In this representation a is the 

amplitude of the real or in-phase component of the signal and b is the 

amplitude of the imaginary or out-of-phase (also called the quadrature) 

component of the signal.  Many signal detection systems are capable of 

measuring the real and quadrature components of an arbitrary waveform.  

The phase shift is then derived from: φ = tan-1(b/a) and the amplitude is 

0.1)ba( 2/122 =+ .   

 

For the phase shift of 45° in the above plot, the amplitudes of the in-phase 

and quadrature components would be 1/√2, or 0.707.  These two waveforms 

are plotted below.  Added together they would equal the phase shifted 

waveform in the first graph.   

 

 



 

 Finally, derivatives are easily done in complex notation via: 

( ) ( ) tcositsintsinitcosieie
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The derivative of cosine is minus the sine multiplied by the frequency.  The 

derivative is plotted below.   

 

 
 

 In the context of inductance, we find that the voltage across in 

inductor is phase shifted by + 90°, and multiplied by ω.   

 

 With these basics, we can now analyze the famous shorted turn or 

loop.   

 

 



The response of a loop target 
 

 A loop of wire, also called a shorted turn, is a simple target for 

illustrating the electromagnetic response of a conducting object in the 

ground.  All active EM systems include an alternating current source, the 

transmitter (T), which produces a primary alternating magnetic field B0.  

This alternating magnetic field induces currents in any nearby conductor by 

virtue of Faraday�s law.  These induced currents in turn produce secondary 

magnetic fields, Bsec, which are measured by the receiver, R.  The current 

source and the receivers are usually multiturn loops of wire.  The field 

produced from a small multiturn loop is proportional to its dipole moment, 

M, which is equal the product of the current, I, the area of the loop, A, and 

the number of turns, N.  The moment is a vector whose direction is normal 

to the plane of the loop (along the axis of the loop).  The currents induced in 

an object in the ground are a function of the time rate of change of the 

primary field at the object and of its size, shape, conductivity (σ) and 

magnetic permeability (µ), and the conductivity and permeability of the 

surrounding ground.  The response of a particular object is defined as the 

measured field for a given configuration of transmitter and receiver.   

 

In the following sketch a transmitter, Tx (of moment Mx where the 

moment is the product of the area, number of turns and the current) carries 

an alternating current ti
0eI ω  (The subscript indicates the direction of the axis 

of the loop).  This transmitter produces a magnetic dipole field given by: 
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or expanded in spherical coordinates, 
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For the x-directed transmitter in the following sketch the dipole field can be 

expanded in rectangular coordinates via:   
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where zyx uandu,u ���  are unit vectors in the x , y and z directions 

respectively.   

 

 
 

 The primary field from the transmitter passes through the target loop.  

Assuming the loop radius is small the total flux normal to the loop, Φ, is , 

nAeB ti
0

�⋅=Φ ω  



where A is the area of the loop and n�  is a unit normal to the plane of the 

target loop.   

 

 The time rate of change of the flux normal to the loop produces an 

emf in the loop by Faraday�s Law: 

t
emf

∂
Φ∂−=  

This emf drives a current through the resistance and inductance of the loop 

as shown in the equivalent circuit shown below.   

 
The sum of the emf and the voltage drops across the resistance and 

inductance must be zero, so we have an equation for the current in the loop: 

0
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In the frequency domain with an eiwt time dependence this equation 

becomes: 
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The ratio of L to R is called the time constant,τ, of the LR circuit and with 

this definition the current becomes: 
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The current induced in the loop has a component in-phase with the inducing 

field and a component 90°(in quadrature) to it.  The relative amount of these 

real and imaginary components may be seen by plotting M and N as a 

function of frequency as seen in Figure 5.1a, b, c.  The three plots illustrate 

the common methods of plotting EM responses.   

 

 The response of this simple loop target has several important 

characteristics: 

 i) at low values ωτ the quadrature response is linear in ωτ, and the real 

response is proportional to (ωτ)2.  The quadrature response is larger than the 

real at low frequencies because the 
t
IL

∂
∂  term is small compared to the IR 

term in 
t
ILIR

∂
∂+  and so the current is simply proportional to Ri Φω .  This 

is called the resistive limit. 

 ii) at high ωτ the real current asymptotes to LΦ , and the quadrature 

component is zero.  This is called the inductive limit.  The high frequency 

current is independent of the resistance of the loop and depends only on its 

size and geometry.  The sense of the current in the loop is such as to keep 

the flux from passing through the loop. 

 

 Figure 5.1c is an alternate means of showing the real and quadrature 

components M and N as a function of ωτ as a single curve (this is called an 

Argand or Bode plot).   



 

 The transient response of the loop when a steady, DC, field is abruptly 

turned off (called the step-function response) is given by: 
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The impulse response is given by: 
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 The current in the single turn loop creates a dipole moment IA which 

in turn produces a secondary magnetic field, Bsec, which is detected by a 

suitable receiver, R.   

 

The secondary field from a loop excited by an impulse function is the same 

as the time rate of change of field at the receiver due to a step function.  

Since most EM receivers measure the time rate of change of field the 

impulse response is commonly the response that is measured.   
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